Extensions 1→N→G→Q→1 with N=C22 and Q=C4⋊Dic5

Direct product G=N×Q with N=C22 and Q=C4⋊Dic5
dρLabelID
C22×C4⋊Dic5320C2^2xC4:Dic5320,1457

Semidirect products G=N:Q with N=C22 and Q=C4⋊Dic5
extensionφ:Q→Aut NdρLabelID
C221(C4⋊Dic5) = C24.47D10φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C22160C2^2:1(C4:Dic5)320,577
C222(C4⋊Dic5) = C24.64D10φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C22160C2^2:2(C4:Dic5)320,839

Non-split extensions G=N.Q with N=C22 and Q=C4⋊Dic5
extensionφ:Q→Aut NdρLabelID
C22.1(C4⋊Dic5) = C24.2D10φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C2280C2^2.1(C4:Dic5)320,85
C22.2(C4⋊Dic5) = C20.60(C4⋊C4)φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C22804C2^2.2(C4:Dic5)320,91
C22.3(C4⋊Dic5) = C20.33C42φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C2280C2^2.3(C4:Dic5)320,113
C22.4(C4⋊Dic5) = C20.34C42φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C22160C2^2.4(C4:Dic5)320,116
C22.5(C4⋊Dic5) = C42.43D10φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C22160C2^2.5(C4:Dic5)320,626
C22.6(C4⋊Dic5) = C23.47D20φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C22160C2^2.6(C4:Dic5)320,748
C22.7(C4⋊Dic5) = M4(2).Dic5φ: C4⋊Dic5/C2×Dic5C2 ⊆ Aut C22804C2^2.7(C4:Dic5)320,752
C22.8(C4⋊Dic5) = C24.D10φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C2280C2^2.8(C4:Dic5)320,84
C22.9(C4⋊Dic5) = (C2×C20).Q8φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C22160C2^2.9(C4:Dic5)320,88
C22.10(C4⋊Dic5) = C23.9D20φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C22804C2^2.10(C4:Dic5)320,115
C22.11(C4⋊Dic5) = C20.51C42φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C22804C2^2.11(C4:Dic5)320,118
C22.12(C4⋊Dic5) = C2013M4(2)φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C22160C2^2.12(C4:Dic5)320,551
C22.13(C4⋊Dic5) = C23.22D20φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C22160C2^2.13(C4:Dic5)320,733
C22.14(C4⋊Dic5) = C2×C40.6C4φ: C4⋊Dic5/C2×C20C2 ⊆ Aut C22160C2^2.14(C4:Dic5)320,734
C22.15(C4⋊Dic5) = C406C8central extension (φ=1)320C2^2.15(C4:Dic5)320,15
C22.16(C4⋊Dic5) = C405C8central extension (φ=1)320C2^2.16(C4:Dic5)320,16
C22.17(C4⋊Dic5) = (C2×C20)⋊8C8central extension (φ=1)320C2^2.17(C4:Dic5)320,82
C22.18(C4⋊Dic5) = C20.39C42central extension (φ=1)320C2^2.18(C4:Dic5)320,109
C22.19(C4⋊Dic5) = C20.40C42central extension (φ=1)160C2^2.19(C4:Dic5)320,110
C22.20(C4⋊Dic5) = C2×C203C8central extension (φ=1)320C2^2.20(C4:Dic5)320,550
C22.21(C4⋊Dic5) = C2×C406C4central extension (φ=1)320C2^2.21(C4:Dic5)320,731
C22.22(C4⋊Dic5) = C2×C405C4central extension (φ=1)320C2^2.22(C4:Dic5)320,732
C22.23(C4⋊Dic5) = C2×C10.10C42central extension (φ=1)320C2^2.23(C4:Dic5)320,835

׿
×
𝔽